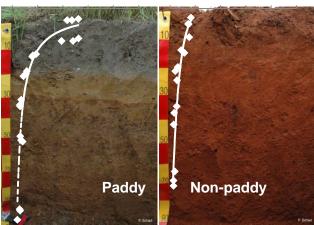
## From soil pit to field scale


Management factors like tillage, fertilization and crop rotation are key drivers for biogeochemical cycles in submerged agro-ecosystems...



International Rice Research Institute (Los Baños, Philippines)

... and thus crucial for soil development and the resulting biogeochemical soil properties.

# Organic carbon [mg g<sup>-1</sup>] Organic carbon [mg g<sup>-1</sup>] 0 10 20 30 40 50 0 10 20 30 40 50



Yingtan Red Soil Ecological Experiment Station (Jiangxi Province, PR China)

## Organizing committee



Angelika Kölbl Ingrid Kögel-Knabner



Frank Jauker Volkmar Wolters

### Contact and information

Further information can be obtained from

http://www.soil-science.com/paddy-workshop

To participate in the workshop, please send a short mail to:

paddy-workshop@wzw.tum.de

### Registration fee: 390,- Euro

This includes accommodation and all meals at the Kardinal-Döpfner-Haus from Sunday evening (21/09) to Wednesday afternoon (24/09). Additional overnight stay till Thursday (25/09): **50,- Euro** 

#### **Accommodation:**

Kardinal-Döpfner-Haus Domberg 27 85354 Freising Germany

## First Circular



# Workshop

Biogeochemistry of submerged agroecosystems: Properties, processes, cycles and functions



21 - 25 September, 2014

**Kardinal - Döpfner - Haus Freising, Germany** 

### Rationale

Paddy soils originate from different soil types.

The mostly submerged conditions lead to a unique agro-ecosystem in terms of element cycling.

Climate change and competition from other sectors will severely affect water availability for rice cropping.

A joint international workshop, organized by two DFG Research Units focusing on crop diversification and paddy soil development, aims at gaining more insight into processes of C and N balances due to different management systems.



**DFG FOR 1701** 



DFG FOR 995

## Collaboration partners



Faculty of Agriculture, Brawijaya University, Malang, Indonesia



International Rice Research Institute, Los Baños, Philippines



The Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China

### **Background**

Different initial natural conditions may require different management practices for rice cultivation. To understand paddy soil evolution, we have to consider

- the dynamics of soil minerals and soil organic matter as well as hydrologically and microbially mediated redox processes.
- the microbial accessibility of organic carbon (OC), nitrogen (N) and iron (Fe), forming stable organo-mineral associations.
- a specific pedogenetic biogeo-chemistry and contrasting mineralogy of different paddy rice soil types.

Comparing paddy soils to non-flooded agricultural soils allows to identify and quantify management-induced differences of biogeochemical properties in different soil types. Incorporating non-flooded crops in rice-rotations entails severe implications in terms of hydrology, element cycling and ecosystem functioning:

- higher OC content in rice-rice rotations only partially compensates for higher methane  $(CH_4)$  emissions.
- reduced  ${\rm CH_4}$  emissions in non-flooded crops are partly offset by increased  ${\rm N_2O}$  emissions ("pollution swapping").
- non-flooded crops increase water losses including dissolved organic and inorganic carbon by crack formation.
- modification of the soil microbiota and fauna further affects biogenic cycling of C and N.

## Topics of the workshop

- Soil organisms: microbial communities, soil fauna and function
- 2. Greenhouse gas emissions
- Soil organic matter: composition, stabilisation and turnover
- **4.** Paddy management (incl. nutrients, nitrogen) and soil-plant interactions
- 5. Matter fluxes, hydrology and modelling

## **Guest speakers**

- Roland Buresh (IRRI, Philippines)
- Zhi-Hong Cao, Ganlin Zhang (CAS, China)
- Sri Rahayu Utami (Brawijaya Univ., Indonesia)
- Thilo Eickhorst (Univ. Bremen, Germany)
- Bernd Lennartz (Univ. Rostock, Germany)
- Genxing Pan (Nanjing Agricult. Univ., China)
- Daniel Said-Pullicino (Univ. Turin, Italy)
- Marco Romani (Ente Nazionale Risi, Italy)
- Steven Sleutel (Ghent University, Belgium)
- Takeshi Watanabe (Nagoya University, Japan)

### Financial support

