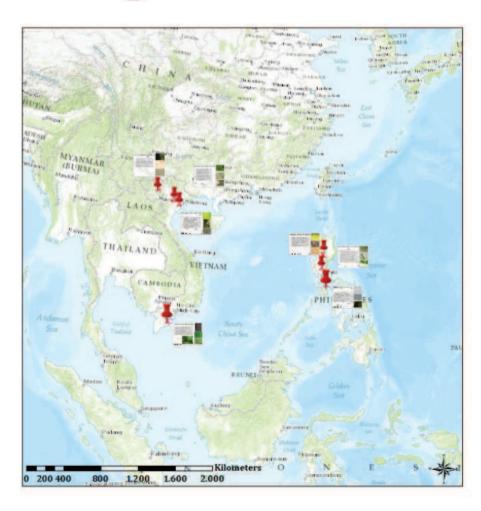
Indication of

Ecosystem Services in different Asian rice cropping areas

Anja Müller, Benjamin Burkhard, Felix Müller

Institute of Nature and Resource Development
Christain-Albrechts University, Kiel: Germany

The "Mission"

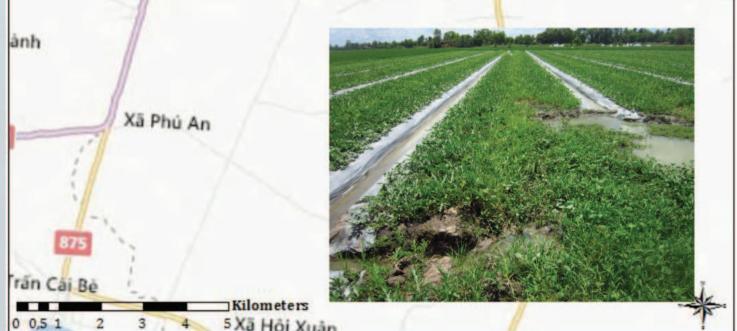

 Field trip from 03.05.-14.06.2012 to Vietnam and the Philippines in order to conduct expert surveys for the valuation of Ecosystem Functions and Services

 Use results to conduct spatially explicit maps about the ESS/ESF provision

Part of LEGATO research project

The Regions

Seven research regions as defined in LEGATO


My Tho Province, Mekong Delta

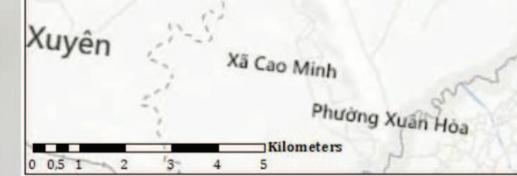
Highly developed infrastructure

Xã Phú Nhuấn

- Intensive cultivation of rice fields three harvests a year
- High input of fertilizer + pesticides
- Relatively low structured landscapes

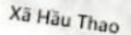
Xã Thanh Hòa

Distric



Vinh Phuc Province, Red River Delta

- Smaller rice fields, landscape structures more distinct
- More traditional rice varieties are cultivated, lower input of chemicals and pesticides compared to Hai Duong region
- Thier "Economic forests"
 - Lack of water due to sandy soils, two harvests/year



Sa Pa, Lao Cai Province/North Vietnam

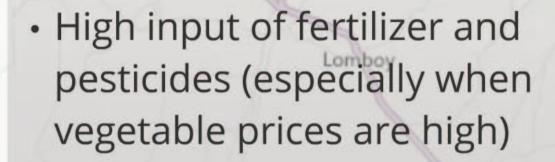
Xã Trung Chải

- Terraced rice cultivation self-subsistent, no markets
- Relatively low chemical inputs, low productivity (one successful harvest/year)
- Increasing corn production due to water scarcity
- Declining forest cover, landslides

in Sa Pa

Laguna Province, Central Luzon Pansol Sigaras Malinao Magdalena San Miguel San Roque Region borders the biggest freshwater lake in the Philippines Two rice harvests/year, mainly along San river tributaries · Despite rice, also corn, fruits and vegetables are grown Tipacan Prinza Palayan Antipolo Nagcarlan Napapatid Oples Balinacon Santa Catalina San Lorenzo Rizal

Kilometers

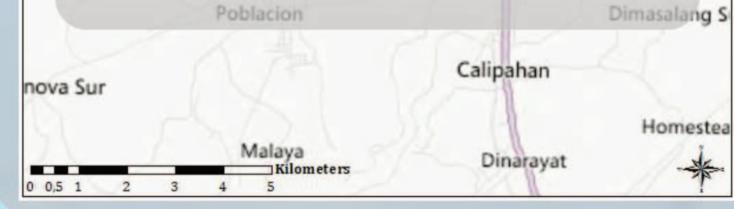


Nueva Ecija Province, Central Luzon

Pinaglabrahan

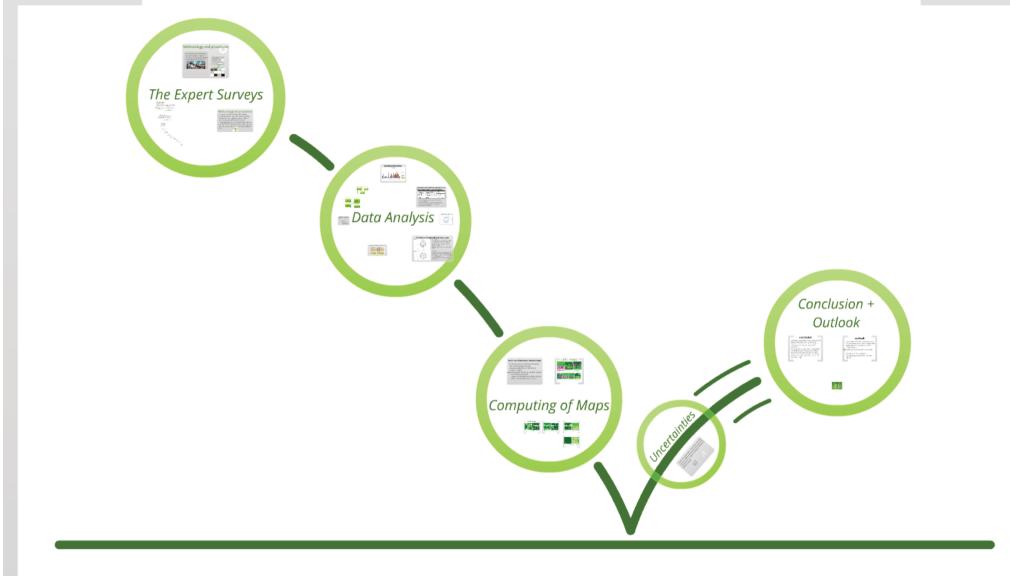
Maligaya

Rice fields intensively cultivated and comparably big


Low structured landscapes

Bosa

Banaue, Ifugao Province


- Rice cultivation on terraces low productivity, traditional varieties, low input of chemicals and pesticides
- Landslides due to infrastructural developments
- Labour scarcity in agriculture due to increase of tourists

Indication of Ecosystem Service capacities

The Expert Surveys

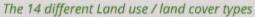
Methodology and procedures

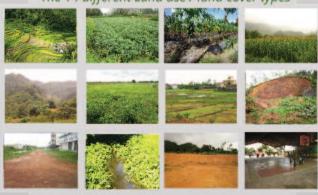
- · Introduction of the 10 different Ecosystem Functions and Services which were defined as relevant for rice cropping systems in LEGATO
- After having described every Ecosystem Functions/Service, the participants were asked to rate the ESS/ESF-capacity of each significant land use / land cover class of the specific investigation

Methodology and procedures

Introductory Presentation

- Ecosystems and their functions
- The concept of Ecosystem Services
- Methodology and procedures


Methodology and procedures


 The regions as defined in LEGATO were visualized using Satellite Pictures in A3-Format

 Next step was to explain the different land use / land cover classes identified as relevant, using photos from the area

Methodology and procedures

- The regions as defined in LEGATO were visualized using Satellite Pictures in A3-Format
- Next step was to explain the different land use / land cover classes identified as relevant, using photos from the area

The 14 di	fferent	land use /	' lana	cover t	ypes
-----------	---------	------------	--------	---------	------

_	The 14 different land ase 7 land cover types										
class	land use/land cover type	description									
1	water bodies	lakes, rivers									
2	ancient forest	old-growth forest (not reforested)									
3	forest	principally trees, also shrubs, bushes and storey									
4	meadow/grassland	grass cover für grazing									
5	highly sealed surface	houses and other buildings, streets									
6	low sealed surface	e.g. unpaved roads, partially sealed surfaces									
7	fruit plantations	fruit trees, banana plantations, cocnut trees									
8	irrigated rice	permanently irrigated rice fields									
9	vegetable plantation	e.g. potatoes, eggplant, peppers, pumpkins									
10	other agricultural land	agricultural land uses not covered by classes 7-9									
11	leisure facilities	parks, camping and sports ground, golf courses									
12	mineral extraction sites	mines, gravel pits									
13	wetland	bogs, marshes									
14	bare areas	bare rock, sand									

[defined due to technical feasibility of classification]

The 14 different land use / land cover types

class	land use/land cover type	description
1	water bodies	lakes, rivers
2	ancient forest	old-growth forest (not reforested)
3	forest	principally trees, also shrubs, bushes and storey
4	meadow/grassland	grass cover für grazing
5	highly sealed surface	houses and other buildings, streets
6	low sealed surface	e.g. unpaved roads, partially sealed surfaces
7	fruit plantations	fruit trees, banana plantations, cocnut trees
8	irrigated rice	permanently irrigated rice fields
9	vegetable plantation	e.g. potatoes, eggplant, peppers, pumpkins
10	other agricultural land	agricultural land uses not covered by classes 7-9
11	leisure facilities	parks, camping and sports ground, golf courses
12	mineral extraction sites	mines, gravel pits
13	wetland	bogs, marshes
14	bare areas	bare rock, sand

[defined due to technical feasibility of classification]

The 14 different Land use / land cover types

Methodology and procedures

- Introduction of the 10 different Ecosystem
 Functions and Services which were defined as
 relevant for rice cropping systems in LEGATO
- After having described every Ecosystem
 Functions/Service, the participants were asked to
 rate the ESS/ESF-capacity of each significant land
 use / land cover class of the specific investigation

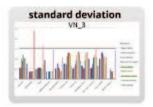
area

code	0 - no relevant capacity 1 - very low relevant capacity 2 - low relevant capacity 3 - medium relevant capacity 4 - high relevant capacity 5 - very high relevant capacity of the land use/land cover class to provide the respective Ecosystem Function/Service Land use & land cover classes	Ecosystem Functions	1 Biodiversity	2 Exergy Capture	Regulating services	3 Nutrient regulation		5 Biocontrol of crop pests	Provisioning services	6 Crop production	7 water provision	Cultural services	8 Recreation & Tourism	9 Landscape aesthetics	10 Cultural identity
	water bodies			7											
2	ancient forest														
3	forest														
4	meadow/grassland														
5	highly sealed surface (incl. houses)				1										
6	low sealed surface														
7	fruit plantation						一								
8	irrigated rice														
9	vegetable plantation														
	agricultural land					Н	\dashv	\exists					\Box	\Box	
11	leisure facilities					\Box	\dashv	\dashv					\Box		
12	mineral extraction sites					H	\dashv	\neg					\Box	\Box	
13	wetland					Н	\dashv	\neg					\Box		
14	bare areas														

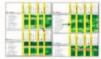
The survey questions

3. Nutrient Regulation

describes the capacity of an ecosystem to recycle nutrients, for example nitrate or phosphate. It can be estimated for example on the base of decomposition rates.


How would you judge the nutrient regulation capacity in the different land use systems?

Methodology and procedures:

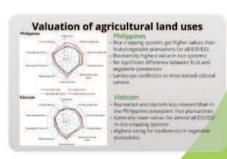

When finished, the ratings for each Ecosystem Function/Service (either 0,1,2,3,4 or 5) were compared - following there was a discussion revealing arguments for a high/low rating

 The resulting matrix built the foundation for creating maps about ecosystem services provision in each of the seven regions

Relevance of the different land use / land cover classes in the research regions

THE RESERVE OF THE PARTY.		10110		
	BOLESON CHARLE			
	was a proportion to a second from			
	and the state of t			

- Ancient forest only in rural areas of less intensive cultivated regions

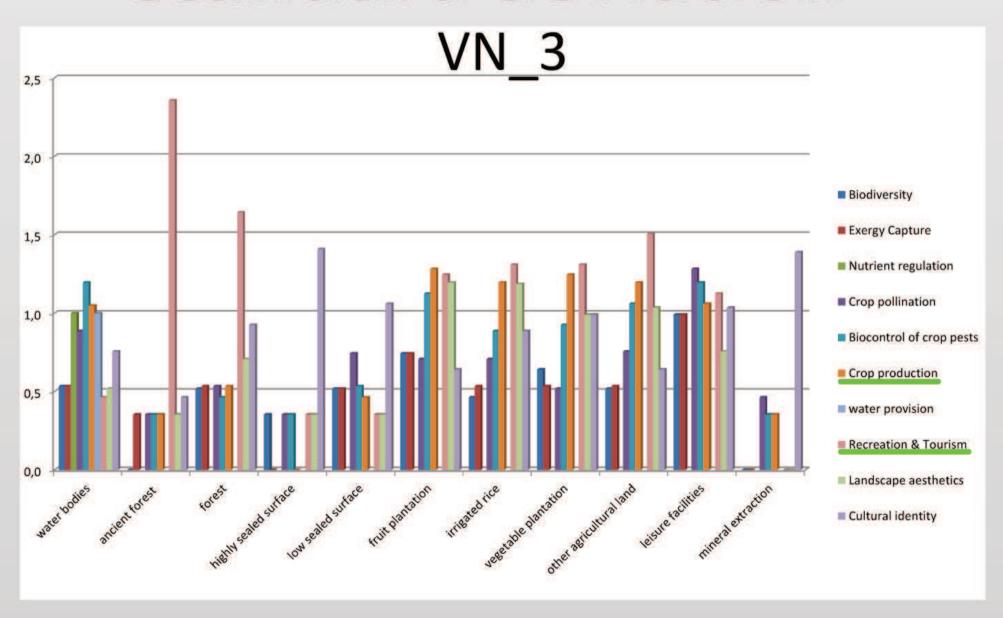

 - Water bodies, rice fields, vegetable plantations and
- sealed surfaces were relevant in any region

 No occurrence of wetlands

Data Analysis Data Analysis

definition of outliers

In order to minimize the risk of false data interpretation, matrices have been scanned with respect to potential outliers - based on literature review and expert knowledge, these were defined as following:

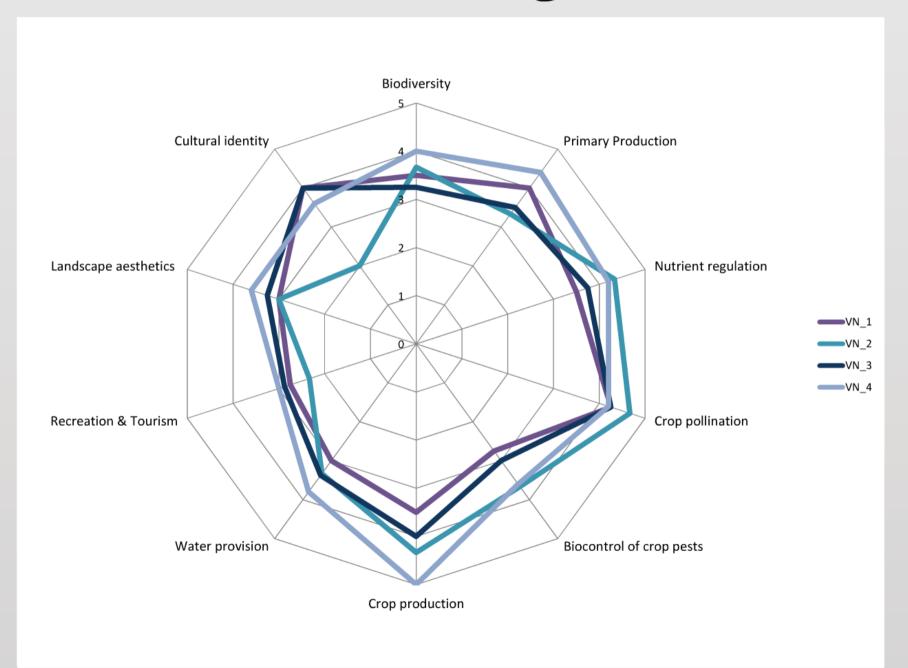

- *Ecosystem Functions:* Biodiversity on highly (values >3) / low sealed (values >4) surfaces
 - Primary Production on highly (values >2) / low sealed (values >3) surfaces

- Ecosystem Services: For provisioning and regulating services, values with a deviation of more than 2 from the arithmetic mean were deleted
 - For cultural services, no outliers have been defined due to the highly subjective perception of this category

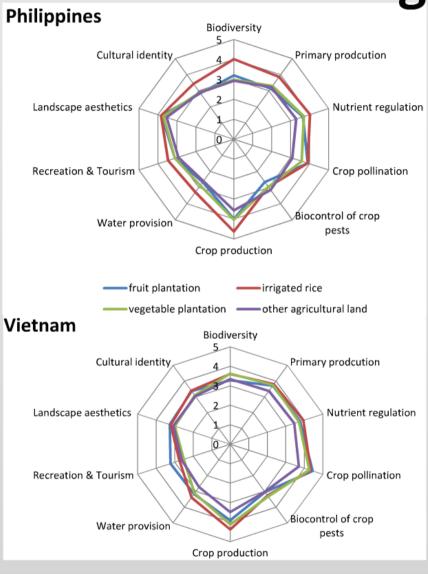
VN_1	Hai Duong Land use & land cover classes	Ecosystem Functions	1 Biodiversity	2 Primary production	Regulating services	3 Nutrient regulation	4 Crop pollination	5 Biocontrol of crop pests	Provisioning services	6 Crop production	7 Water provision	Cultural services	8 Recreation & Tourism	9 Landscape aesthetics	10 Cultural identity
10	water bodies meadow/grassland highly sealed surface low sealed surface fruit plantation ririgated rice vegetable plantation cher agricultural land mineral extraction		3.5 3.3 1.0 1.8 3.5 3.5 3.5 3.5 1.8 1.3 1.5	3.0 3.5 0.3 1.3 3.8 4.0 3.8 3.0 1.0 0.8 1.3		3.3 3.8 0.5 1.3 3.5 3.5 3.8 3.3 0.8 0.3 2.0	3.0 3.8 0.8 1.3 4.8 4.3 4.8 4.3 1.3 1.3	2.0 3.7 1.5 1.5 2.8 2.8 2.8 2.0 2.3		2.8 3.5 0.8 3.5 3.5 3.8 2.8 0.5 0.5	3.8 3.0 0.3 0.8 2.8 3.0 2.8 2.3 0.8 0.0		3.8 3.3 2.8 2.8 3.0 2.8 2.8 3.5 4.3 3.3	3.5 3.3 1.8 1.5 3.0 3.0 3.0 3.3 4.5 2.8 0.8	3.5 3.3 1.8 1.5 3.8 4.0 3.5 3.3 2.8 1.8 1.5
VN_3	Lao Cai Land use & land cover classes	Ecosystem Functions	1 Biodiversity	2 Primary prodeution	Regulating services	3 Nutrient regulation	4 Crop pollination	5 Biocontrol of crop pests	Provisioning services	6 Crop production	7 Water provision	Cultural services	8 Recreation & Tourism	9 Landscape aesthetics	10 Cultural identity
10	low sealed surface		4.0 5.0 4.4 0.1 0.4 3.4 3.3 3.1 3.4	4.0 4.9 4.5 0.0 0.4 3.4 3.5 3.5 3.5		4.3 4.9 4.5 0.1 0.6 3.3 3.8 3.6 3.5	2.5 4.9 4.8 0.1 0.5 4.4 4.3 4.0 3.6 0.7	2.9 4.9 4.5 0.0 0.3 2.4 3.0 3.4 3.0		3.8 4.8 3.6 0.1 0.1 3.9 4.7 4.7 4.0	4.4 4.9 4.3 0.1 0.1 3.3 3.4 3.1 2.8		4.0 3.8 3.6 1.6 1.8 3.1 2.9 2.5 2.3	4.0 4.8 4.0 0.6 0.6 3.1 3.3 2.9 3.1	4.1 4.8 4.1 0.5 1.0 3.4 4.0 3.6 3.8 2.5

VN_2	Vinh Phuc Land use & land cover classes	Ecosystem Functions	1 Biodiversity	2 Primary prodcution	Regulating services	3 Nutrient regulation	4 Crop pollination	5 Biocontrol of crop pests	Provisioning services	6 Crop production	7 Water provision	Cultural services	8 Recreation & Tourism	9 Landscape aesthetics	10 Cultural identity
1	water bodies		3.7	3.7		3.7	2.7	2.3		2.3	4.3		3.7	3,7	2.7
2	ancient forest		4.0	3.7		4.0	4.0	3.3		2.7 3.0	4.7		4.0	4.3	2.3
TA-C	meadow/grassland		3.7 2.3	3.7		4.0	3.3	3.3		2.0	4.3 3.3		4.0 2.3	4.0 3.0	2.0
	highly sealed surface		1.5	1.0		1.7	1.0	2.7		1.0	1.7		4.0	2.3	1.7
	low sealed surface		2.0	2.0		2.3	1.7	2.7		1.3	2.3		2.7	2.3	2.3
7	fruit plantation		2.7	3.3		4.3	4.0	3.7		3.7	3.0		3.0	3.3	2.3
8	irrigated rice		3.7	3.3		4.3	4.7	3.7		4.3	3.3		2.3	3.0	2.0
9	vegetable plantation		3.7	3.3		3.7	4.3	3.7		3.7	3.0		2.0	2.7	1.
	other agricultural land		3.3	3.0		3.7	3.3	3.3		3.0	2.7		2.3	2.7	2.0
	leisure facilities		2.3	2.0		2.7	2.0	2.7		1.7	2.0		4.3	3.7	3.3
	mineral extraction		2.0	2.0		2.0	1.3	1.7		1.0	1.7		2.7	1.7	1.3
	wetland		2.7	2.3		3.0	2.3	2.0		2.3	3.7		1.0	1.7	1.0
14	bare areas		1.5	1./		100	1.5	2.7		1.5	1.7			1 12	
	ACTOR CONTRACTOR					-	A CONTRACTOR	- ALL COLO		210	7.60		4.00	1.0	2,807
VN_4	Tien Giang	osystem Functions	Biodiversity	Primary prodeution	gulating services		Crop pollination		ovisioning services	outs:		ltural services	1111		
VN_4	Land use & land cover classes	Ecosystem Functions	1 Biodiversity	2 Primary prodeution	Regulating services	3 Nutrient regulation		5 Biocontrol of crop pests	Provisioning services	6 Crop production	7 Water provision	Cultural services	8 Recreation & Tourism	9 Landscape aesthetics	10 Cultural identity
	Land use & land cover classes	Ecosystem Functions	Biodiversity	3.4	Regulating services	3 Nutrient regulation	Crop pollination	5 Biocontrol of crop pests	Provisioning services	outs:	7 Water provision	Cultural services	Recreation & Tourism	9 Landscape aesthetics	2 10 Cultural identity
code 1 2	Land use & land cover classes water bodies forest	Ecosystem Functions	3.8 4.4	3.4 4.8	Regulating services	3 Nutrient regulation	4 Crop pollination	S Biocontrol of crop pests	Provisioning services	Crop production	7 Water provision	Cultural services	0. P Recreation & Tourism	8 + 9 Landscape aesthetics	10 Cultural identity
code 1 2	Land use & land cover classes water bodies forest highly sealed surfaces	Ecosystem Functions	3.8 4.4 2.0	3.4 4.8 1.3	Regulating services	3 Nutrient regulation	0.0 4 Crop pollination	S Biocontrol of crop pests 7.7 4.8 0.4	Provisioning services	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 Water provision	Cultural services	0.4 0.4 0.4 0.4 0.4 0.4 0.4	8.4 4.8 1.8	10 Cultural identity
2 3 4	Land use & land cover classes water bodies forest highly sealed surfaces low sealed surface	Ecosystem Functions	3.8 4.4 2.0 2.3	3.4 4.8 1.3 1.4	Regulating services	3. Nutrient regulation 2.7 1.3 0.2 0.2	0.0 0.0 0.0	2.7 4.8 0.4 0.0	Provisioning services	0.0 0.0	4.6 2.4 0.0 0.0	Cultural services	8 Recreation & Tourism 4.0 4.2 4.2	6 Candscape aesthetics 8.1 8 1.4	10 Cultural identity 4.2 3.0
2 3 4 5	Land use & land cover classes water bodies forest highly sealed surfaces low sealed surface fruit plantation	Ecosystem Functions	3.8 4.4 2.0 2.3 3.6	3.4 4.8 1.3 1.4 4.4	Regulating services	3 Nutrient regulation 2.7 1.3 0.2 0.2 4.0	0.0 0.0 0.0 0.0 0.0	2.7 4.8 0.4 0.0 3.3	Provisioning services	0.3 3.2 0.0 4.6	4.6 0.0 0.0 3.6	Cultural services	8 Recreation & Tourism 0.4 0.7 1.8 3.8	6 Fandscape aesthetics 4.4 4.8 1.8 3.6	4.0 4.2 3.0 2.0 4.0
2 3 4	Land use & land cover classes water bodies forest highly sealed surfaces low sealed surface fruit plantation irrigated rice	Ecosystem Functions	3.8 4.4 2.0 2.3	3.4 4.8 1.3 1.4	Regulating services	3. Nutrient regulation 2.7 1.3 0.2 0.2	0.0 0.0 0.0	2.7 4.8 0.4 0.0	Provisioning services	0.0 0.0	4.6 2.4 0.0 0.0	Cultural services	8 Recreation & Tourism 4.0 4.2 4.2	6 Candscape aesthetics 8.1 8 1.4	10 Cultural identity 4.2 3.0

standard deviation



Relevance of the different land use / land cover classes in the research regions


class	land use/land cover type	description	PH_1	PH_2	PH_3	VN_1	VN_2	VN_3	3 VN_4
1	water bodies	lakes, rivers, ponds	X	X	X	X	X	X	x
2	ancient forest	old-growth forest (not reforested)			х		X	x	
3	forest	principally trees, also shrubs, bushes and storey			X		X	X	X
4	meadow/grassland	grass cover für grazing	x	x		x	x		
5	highly sealed surface	houses and other buildings, streets	X	x	х	x	X	x	X
6	low sealed surface	e.g. unpaved roads, partially sealed surfaces	X	X	X	X	X	X	X
7	fruit plantations	fruit trees, banana plantations, cocnut trees	X	x		X	X	X	x
8	irrigated rice	permanently irrigated rice fields	x	x	х	x	x	X	x
9	vegetable plantation	e.g. potatoes, eggplant, peppers, pumpkins	X	×	X	x	X	X	x
10	other agricultural land	agricultural land uses not covered by classes 7-9	X	x		X	X	X	X
11	leisure facilities	parks, camping and sports ground, golf courses	X	x		X	X	X	
12	mineral extraction sites	mines, gravel pits		x		X	x	X	
13	wetland	bogs, marshes					x <		
14	bare areas	bare rock, sand			X	X	X	X	

- Ancient forest only in rural areas of less intensive cultivated regions
- Water bodies, rice fields, vegetable plantations and sealed surfaces were relevant in any region
- No occurrence of wetlands

Valuation of irrigated rice

Valuation of agricultural land uses

Philippines

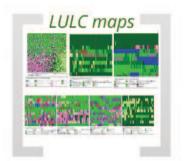
- Rice cropping systems get higher values than fruits/vegetable plantations for all ESF/ESS
- Biodiversity highest value in rice systems!
- No significant difference between fruit and vegetable plantations
- Landscape aesthetics as most valued cultural service

Vietnam

- Recreation and tourism less relevant than in the Philippines (exception: fruit plantations)
- Generally lower values for almost all ESS/ESF in rice cropping systems
- Highest rating for biodiversity in vegetable plantations

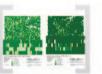
Ranking of the valuated Functions and Services

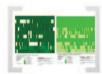
Philippines

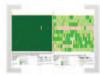

Rank	ESF/ESS	
1	Water provision	
2	Crop production	
3	Primary Production	
4	Nutrient regulation	
4	Biocontrol of crop pests	
5	Biodiversity	
6	Crop pollination	
7	Cultural identity	
8	Recreation and tourism	
9	Landscape aesthetics	

Vietnam

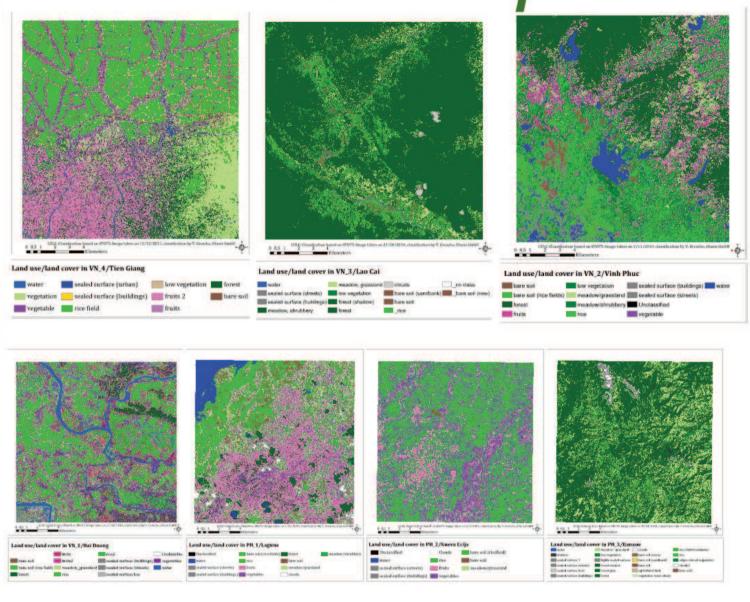
	Rank	ESF/ESS						
	1	Biodiversity						
	2	Crop production						
	3	Primary Production						
	4	Nutrient regulation						
V	4	Biocontrol of crop pests						
	4	Water provision						
	5	Crop pollination						
	6	Cultural identity						
	7	Recreation and tourism						
	7	Landscape aesthetics						

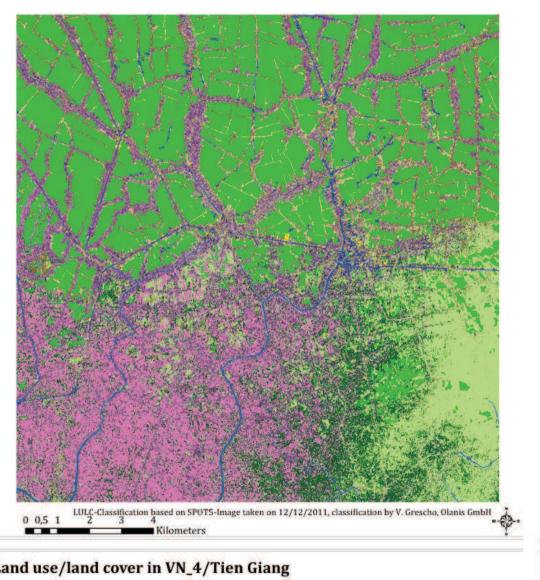

Land use / land cover classification

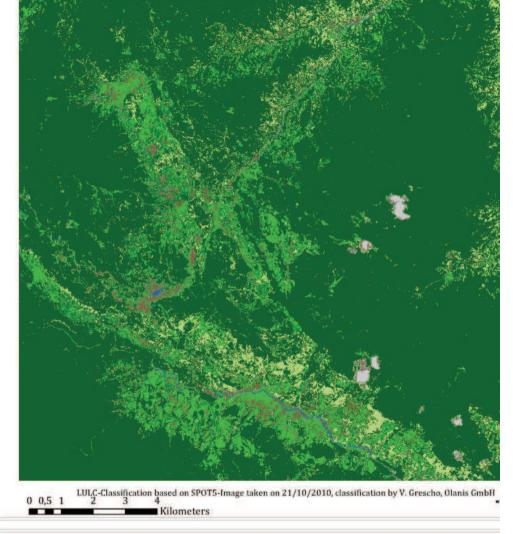

- Based on a blend of SPOT5 panchromatic and SPOT5 multispectral data
- Supervised classification with ERDAS Imagine software
- →Not distinguishable due to technical reasons:
 - · Forest & ancient forest
 - · Sealed & industrial areas, leisure facilities
 - Bare soil & mineral extraction sites



Computing of Maps

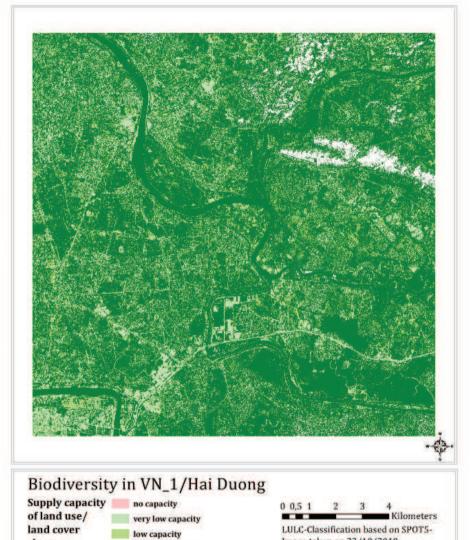


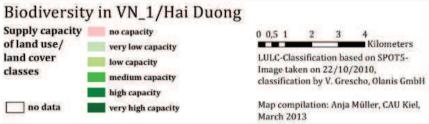


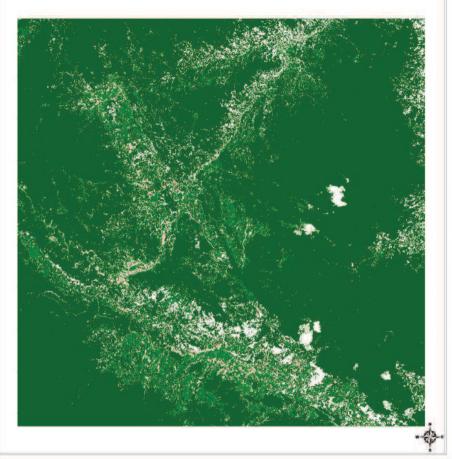

Land use / land cover classification

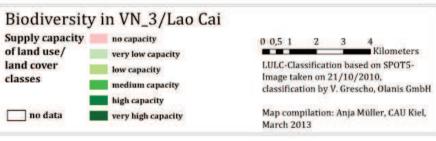
- Based on a blend of SPOT5 panchromatic and SPOT5 multispectral data
- Supervised classification with ERDAS Imagine software
- →Not distinguishable due to technical reasons:
 - Forest & ancient forest
 - Sealed & industrial areas, leisure facilities
 - Bare soil & mineral extraction sites

LULC maps

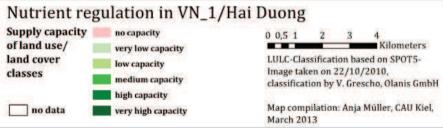


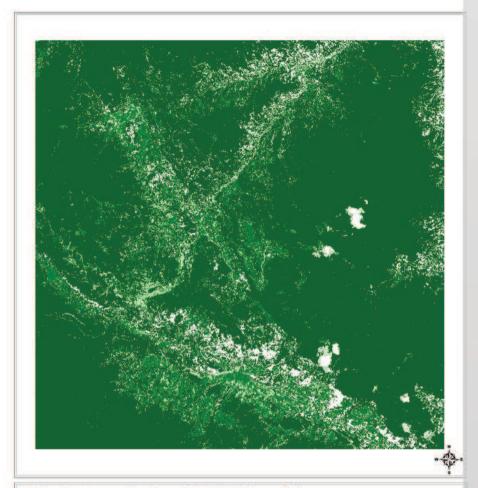


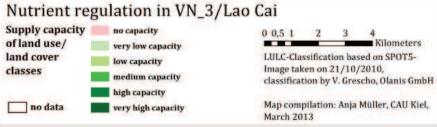


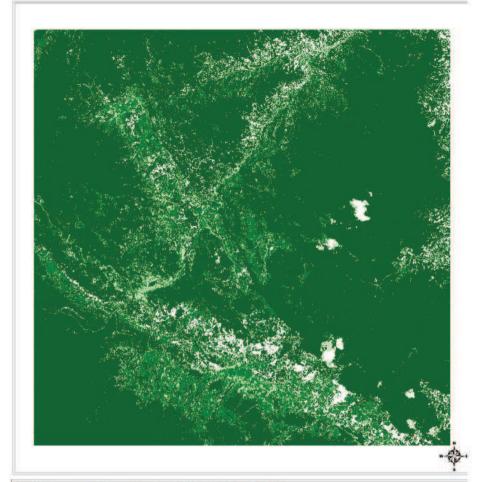


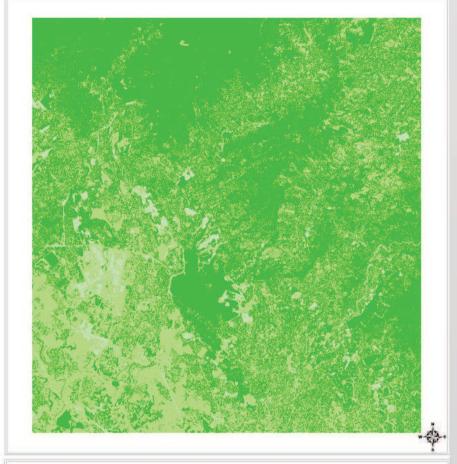
the ESF/ESS maps

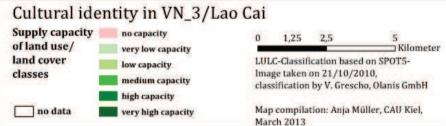


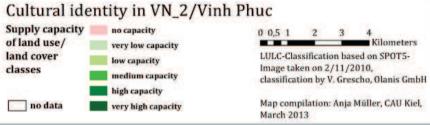


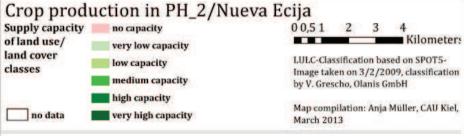


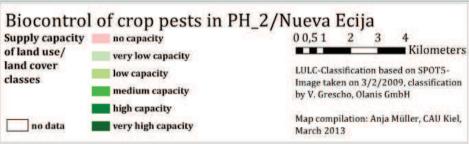












Uncertainties

- Statistical significance amount of collected data and representativeness of participants
- Information loss due to technical limitations
- Expert surveys

No professional integrates - Inscuring should degree of understanding from post-opens. If and instanding from post-opens, the second of the selection of the second of the

- Statistical significance amount of collected data and representativeness of participants
- Information loss due to technical limitations
- Expert surveys
 - No professional interpreter insecurity about degree of understanding from participants
 - Hierarchical structures assumed influence of one on other participants
 - Influence of mentality unwillingness to give low values to "their" landscapes
 - Comprehensibility of the ESS-concept only short introduction, often no previous knowledge

- No professional interpreter insecurity about degree of understanding from participants
- Hierarchical structures assumed influence of one on other participants
- Influence of mentality unwillingness to give low values to "their" landscapes
- Comprehensibility of the ESS-concept only short introduction, often no previous knowledge

Conclusion + Outlook

conclusion

- Combination of quantitative (LULC) and qualitative (expert values) data gives a comprehensive impression about current states in varying rice cropping systems and related production intensities.
- Overall significantly higher capacity of landscapes to provide Ecosystem Functions and Services in less intensive cultivated rice cropping systems
- Expressiveness of maps should be increased by integration of further data from measurements and/or modelling

outlook

- integration of data from comprehensive field measurements and modelling results collected/produced in the course of LEGATO project
- increasing the expressiveness of maps
- develop methods to improve comparability of results from different regions

conclusion

- Combination of quantitative (LULC) and qualitative (expert values) data gives a comprehensive impression about current states in varying rice cropping systems and related production intensities.
- Overall significantly higher capacity of landscapes to provide Ecosystem Functions and Services in less intensive cultivated rice cropping systems
- Expressiveness of maps should be increased by integration of further data from measurements and/or modelling

outlook

- integration of data from comprehensive field measurements and modelling results collected/produced in the course of LEGATO project
- increasing the expressiveness of maps
 - develop methods to improve comparability of results from different regions

