Current Opinion in Plant Biology (2013) 16(2): 261–269. doi: 10.1016/j.pbi.2013.03.008 Li ZK, Zhang FFuture world food security requires continued and sustainable increase in rice production. Much of this increase has to come from new high yielding cultivars with resistances to multiple stresses. While future rice breeding in the post-genomics era has to build upon the progress in rice functional genomics research, great challenges remain in understanding the genetic/molecular systems underlying complex traits and linking the tremendous genome sequence diversity in the rice germplasm collections to the phenotypic variation of important traits. To meet the challenges in future rice improvement, a molecular breeding (MB) strategy has been practiced in China with significant progress in establishing the MB material and information platforms in the process of breeding, and in developing new varieties through two novel MB schemes. However, full implementation of this strategy requires tremendous investment to build capacities in high-throughput genotyping, reliable/precision phenotyping and in developing and adopting new genomics/genetic information-based analytic/application breeding tools, which are not in place in most of the public rice breeding institutions. Nevertheless, future advances and developments in these areas are expected to generate enormous knowledge of rice traits and application tools that enable breeders to deploy more efficient and effective breeding strategies to maximize rice productivity and resource use efficiencies in various ecosystems.
See Attached files here:
|